Rivest-Shamir-Adleman algorithm - Definition. Was ist Rivest-Shamir-Adleman algorithm
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Rivest-Shamir-Adleman algorithm - definition

ALGORITHM FOR PUBLIC-KEY CRYPTOGRAPHY
RSA cryptosystem; RSA encryption; Rivest-Shamir-Adleman; RSA algorithm; RSA Cryptosystem; Rsa encryption; RSA cipher; Branch prediction analysis attacks; Branch prediction analysis; Rivest Shamir Adleman; Rivest, Shamir, Adleman; Rsa Algorithm; Rivest-Shamir-Adleman Algorithm; Rsa algorithm; Rivest-Shamir-Adleman algorithm; RSA (algorithm); RSA public key cryptography; RSA (crypto); Rivest-Shamir-Adelson; Rivest-Shamir-Adelman; Rivest–Shamir–Adleman cryptosystem; Rivest–Shamir–Adleman; Rivest-Shamir-Adleman cryptosystem
  • [[Adi Shamir]], co-inventor of RSA (the others are [[Ron Rivest]] and [[Leonard Adleman]])

RSA (cryptosystem)         
RSA (RivestShamirAdleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest.
RSA encryption         
<cryptography, algorithm> A public-key cryptosystem for both encryption and authentication, invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. Its name comes from their initials. The RSA algorithm works as follows. Take two large {prime numbers}, p and q, and find their product n = pq; n is called the modulus. Choose a number, e, less than n and {relatively prime} to (p-1)(q-1), and find its reciprocal mod (p-1)(q-1), and call this d. Thus ed = 1 mod (p-1)(q-1); e and d are called the public and private exponents, respectively. The public key is the pair (n, e); the private key is d. The factors p and q must be kept secret, or destroyed. It is difficult (presumably) to obtain the private key d from the public key (n, e). If one could factor n into p and q, however, then one could obtain the private key d. Thus the entire security of RSA depends on the difficulty of factoring; an easy method for factoring products of large prime numbers would break RSA. RSA FAQ (http://rsa.com/rsalabs/faq/faq_home.html). (2004-07-14)
Prim's algorithm         
  • The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of ''C'' by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is selected globally.
  • generation]] of this maze, which applies Prim's algorithm to a randomly weighted [[grid graph]].
  • Prim's algorithm starting at vertex A. In the third step, edges BD and AB both have weight 2, so BD is chosen arbitrarily. After that step, AB is no longer a candidate for addition to the tree because it links two nodes that are already in the tree.
  • Demonstration of proof. In this case, the graph ''Y<sub>1</sub>'' = ''Y'' − ''f'' + ''e'' is already equal to ''Y''. In general, the process may need to be repeated.
ALGORITHM
Jarnik algorithm; Prim-Jarnik algorithm; Prim-Jarnik's algorithm; Jarnik's algorithm; Prim-Jarník; DJP algorithm; Jarník algorithm; Jarník's algorithm; Jarníks algorithm; Jarniks algorithm; Prim-Jarník algorithm; Prim-Jarnik; Prim algorithm; Prim’s algorithm; Jarník-Prim; Prims algorithm
In computer science, Prim's algorithm (also known as Jarník's algorithm) is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.

Wikipedia

RSA (cryptosystem)

RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is widely used for secure data transmission. It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ) (the British signals intelligence agency) by the English mathematician Clifford Cocks. That system was declassified in 1997.

In a public-key cryptosystem, the encryption key is public and distinct from the decryption key, which is kept secret (private). An RSA user creates and publishes a public key based on two large prime numbers, along with an auxiliary value. The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decoded by someone who knows the prime numbers.

The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. There are no published methods to defeat the system if a large enough key is used.

RSA is a relatively slow algorithm. Because of this, it is not commonly used to directly encrypt user data. More often, RSA is used to transmit shared keys for symmetric-key cryptography, which are then used for bulk encryption–decryption.